鸿尘逍遥提示您:看后求收藏(DZ读书dzdushi.com),接着再看更方便。

459章

简单的来讲,谷山志村猜想就是说,有理数域上面的椭圆曲线都可以模式化。

问题看起来很简单,让普通的本科生理解起来也毫无问题。

但这个猜想,却已经困扰了全世界的数学家足足五十多年的时间。

甚至在谷山志村猜想刚被提出的那段时间,证明过程可以说用举步维艰来形容丝毫不为过。

直到1993年,怀尔斯宣布证明费马大定理,谷山志村猜想的证明才往前迈动了一大步。

但近几年,随着将精力倾注在谷山志村猜想的数学家逐渐变少,该猜想探索的路途再次变得一片黑暗。

其实,每个数学猜想的证明都像是一场长跑。

一代代人,一位位数学家,奋力奔跑着,将手中的接力棒不断传递下去。

不知道终点,也不知道方向,同行的人不断倒下,新的奔跑着不停加入。

而现在,那个谷山志村猜想的接力棒已经传到了程诺手中。

身边,已经没有几位同行者。

前方,更是看不到丝毫光亮的迷途。

程诺只能循着前人走过的道路,摸索着前进,寻找那乍破黑暗的光明,试图冲到比赛的终点。

…………

为了交流方便,程诺和组下的另外两位教授直接把办公地点放在了克雷数学研究所内的一间办公室。

证明工作的大方向由程诺进行把控。

而丹麦和比利时的两位数学教授则进行细节的填充。

对于谷山志村猜想的证明思路,程诺和大部分前辈一样,把费马大定理当做其突破口。

用数学的语言来说,费马大定理是谷山志村猜想的必要不充分条件。

也就是说,谷山志村定理再经过一定的推导之后,可以证明费马大定理。

然而,费马大定理的存在,却不能证明谷山志村猜想的正确。

在一定意义上,费马大定理只能说明谷山志村猜想猜想在半稳定的椭圆曲线上成立。

但是,费马大定理对谷山志村猜想的证明仍具有很高的借鉴意义。

程诺也决定从这个方向入手,尝试证明方法。

一个人呆在办公室内,已经保持一个动作一个多小时的程诺终于感觉已经抓到了那一丝灵感,拿过笔,在草稿纸上唰唰唰记下灵感。

“依据费马定理n=4情形,将研究对象定义为椭圆曲线e:y^2=x^3-x.设β是一个素数,此方程在有限域ft中解的个数在β=1,3,5……时分别为……”

“……下一步,利用模群Γ(1):=sl2(z)通过分式线性变换作用在复上半平面h={z∈c|im(z)>0}上。”

“……第三步,假设e:y²=ax³+by²+cx+d是有理数域q上的椭圆曲线,则需要考虑它在系数模素数的“约化”。并且,同构的椭圆曲线可能给出完全不同的“约化”:考虑y²=27x³-3x和y²=x³-x,前者不是f3上的椭圆曲线,后者却是f3上的椭圆曲线。因此,便得到结论1:同构的椭圆曲线应该看成是等同的!”

…………

和程诺他们这个证明小组一样,其余的七个证明小组,在拿到任务的第一时间,便在各自组长的带领下马不停蹄的开始了研究工作。

毕竟,他们这次不光光是要和三年的研究周期做赛跑,还要和其余的几个小组拼进度。

八个课题小组是同时开题,研究人员的分配也和猜想难度呈正比。众人的起跑线差不多相同。

数学家们没有人肯甘居人后。

所以这次清洗活动,就带有了一丝竞速的意味在。

“几何化猜想”证明小组。

布莱克教授作为几何领域的老牌数学家之一,被任命为组长职位。

和“谷山志村猜想”证明小组一样,他们的小组成员只有三人。

论难度,“几何化猜想”和“谷山志村”猜想的研究难度相当。

但有一点不同的是,布莱克手下的两位数学家比程诺手下的那两位数学家强了不止一点半点。

单说一点,布莱克小组的三位成员,有两人都曾获得过维布伦奖,而程诺那边,只有程诺一人。

所以,至始至终,布莱克都没有把隔壁的“谷山志村猜想”研究小组当做一个可以正视对手来看。

但这种想法,在克雷数学研究所针对这次清洗活动,进行的每隔三月一次的例行进度报告会上,发生了彻底的改变。

…………

时间进入2024年的1月。

关于谷山志村猜想的证明工作已经进行了三个月时间。

三个月来,程诺几乎是拒绝了所有的娱乐活动,宛如苦行僧般将全部的精力投入到谷山志村猜想中。

虽然很累,但成活是非常显著呢!

而今天,是三月一次的例行进度报告时间。

程诺来到会堂时,多数数学家已经就位。

所谓三月一次的例行进度报告,就是对这段时间内的课题研究做一个简单的概述,顺便再对未来说一下大体的规划。

按猜想难度,程诺被安排在第三个汇报。

第一个霍奇猜想,那个年纪看起来已经有五十多岁的数学家在上面吧啦吧啦的讲了十多分钟,但简单概括起来就是四个字:毫无头绪!

也对,霍奇猜想百年来都未被解决,又名列七大数学猜想之一,众人对三个月就能理出头绪也不抱什么期望。

第二位上去的就是布莱克教授。

相比于霍奇猜想证明小组的毫无头绪,却天花乱坠的讲了一大堆,布莱克教授讲述内容就比较务实的多了。

通过三个月的研究,他们对“几何化”猜想的证明过程已经有初步的思路,并且稳步前进中。预计一年时间内能解决该猜想。

并且,布莱克教授还对具体的推理内容进行了简单的讲述,得到了众人的一致认可。

下台时,布莱克教授迎来啪啪啪的掌声。

布莱克嘴角上扬,神态悠然的坐回座位。

这时,程诺理了理衣衫,起身走到台上。

瞬间,程诺吸引了所有的人的注意。

最近这段时间,虽然他们共同在克雷数学研究所办公,但程诺他们课题组一直深居简出,很难听到什么关于他们的消息。

对于这个明显不被众人看好的小组,其实他们也好奇,三个月的时间,他们能做到何种程度。

只希望不是霍奇猜想小组那种毫无头绪才好。

程诺微微一笑,没有半点废话,直奔主题,“众所周知,谷山志村猜想和费马大定理有着密不可分的关系,自守形式的模式化,可以利用费马定理构建简单的椭圆曲线,多项式映射的关系说明……”

“……而后,针对复数域上的曲线,我们推导除了简单的同构群。”说到这,程诺停顿了一下,露出一抹神秘的微笑,“然后,我们发现了一个有趣的东西……”

www.。m.

其它小说推荐阅读 More+
户外直播间

户外直播间

昙花落
开局一座破道观,获得户外直播系统,于是,他开直播,采灵芝,养鹰隼,秀操作,等他回头,他才发现全世界都在关注着他。参加《向往的生活》,观众:“这主播是在修仙??”参加《跟着贝爷去冒险
其它 完结 218万字
命之途

命之途

莫若梦兮
顺应天命者,悲;逆应天命者,死! 如之可奈何?祈求天地庇佑? 殊不知“天地不仁,以万物为刍狗!” 身世坎坷,且看他如何面对人生! 经历大变,且看他如何渐渐蜕变! 命运降临,且看他如何对
其它 连载 2627万字
不会真有人觉得修仙难吧

不会真有人觉得修仙难吧

黑夜弥天
仙武纪元,三月三。 在掌门的不懈努力之下,青云道宗终于迎来了第八位弟子叶平。 为了能让叶平留下,也为了能够得到叶平的尊重,宗门上下用尽各种手段哄骗。 吹嘘自己是绝世剑道天才,
其它 完结 170万字
乔斯年叶佳期

乔斯年叶佳期

罗衣对雪
京城出了大新闻:乔爷守了十二年的小媳妇跑了,跑了!连儿子都不要了!一时间流言四起:听说是乔爷腹黑又高冷、婚后生活不和谐;听说是小媳妇和别人好上了;听说是儿子太丑。某天,小奶娃找到了叶佳
其它 连载 357万字
后娘

后娘

元月月半
不婚主义者刘灵潇洒一辈子,死前朋友问她有没有未了心愿,刘灵说没能养个娃。朋友犯难,这可不好办。没等朋友开口,刘灵又说生孩子的时候娘奔死儿奔生,还是算了吧。可惜苍天听见了。死后没进阎王殿
其它 完结 157万字
网游之全球在线

网游之全球在线

笙箫剑客
史上第一款集个人冒险+领地建设+位面战争于一体的跨时代网游《地球Online》,全球玩家在线,群雄争霸。且看重生后的主角如何建设领地,招募历史猛将名士,搅动风云,成就帝王霸业!
其它 连载 543万字